人工智能研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動編程等。
知識表示是人工智能的基本問題之壹,推理和搜索與表示方法密切相關。常用的知識表示方法包括:邏輯表示法、產生式表示法、語義網絡表示法和框架表示法。
常識自然受到人們的關註,人們提出了非單調推理、定性推理等多種方法,從不同角度表達和處理常識。
解題中的自動推理就是運用知識的過程。因為知識表示方法多,相應的推理方法也多。推理過程壹般可分為演繹推理和非演繹推理。謂詞邏輯是演繹推理的基礎。結構化表示下的繼承性能推理是非演繹的。由於知識處理的需要,近年來,人們提出了多種非演繹推理方法,如連接機制推理、類比推理、基於實例的推理、演繹推理和限制推理等。
搜索是人工智能的壹種問題求解方法,搜索策略決定了問題求解的壹個推理步驟中所用知識的優先級。可分為無信息指導的盲目搜索和經驗知識指導的啟發式搜索。啟發式知識通常用啟發式函數來表示。啟發式知識運用得越充分,解決問題的搜索空間就越小。典型的啟發式搜索方法有A*、AO*算法等。近年來,搜索方法的研究開始關註那些百萬節點的超大規模搜索問題。
機器學習是人工智能的另壹個重要課題。機器學習是指在壹定的知識表示意義上獲取新知識的過程。根據學習機制的不同,主要有歸納學習、分析學習、聯動機制學習和遺傳學習。
知識處理系統主要由知識庫和推理機組成。知識庫存儲系統所需的知識。當知識量很大,有很多表示時,對知識的合理組織和管理就很重要。推理機規定了解題時運用知識的基本方法和策略,推理過程中需要建立數據庫或采用黑板機制來記錄結果或交流。如果某壹領域(如醫療診斷)的專家知識存儲在知識庫中,這樣的知識系統稱為專家系統。為了滿足解決復雜問題的需要,單壹的專家系統正在向多智能體分布式人工智能系統發展。這時,知識共享、主體間的合作以及矛盾的產生和處理將是研究的重點問題。
壹、人工智能的歷史
人工智能(AI)是壹門具有挑戰性的科學,從事這項工作的人必須懂得計算機知識、心理學和哲學。人工智能包括的科學範圍很廣,由不同的領域組成,比如機器學習、計算機視覺等等。壹般來說,人工智能的目的是讓計算機像人壹樣思考。這不是壹件容易的事情。如果妳想制造壹臺思維機器,妳必須知道思維是什麽,更進壹步,智慧是什麽,它的性能是什麽。妳可以說科學。
家有智慧,但妳絕不會說壹個路人什麽都不懂,沒有知識。妳也不敢說孩子沒有智慧,但妳不敢說它對壹臺機器來說是有智慧的。那麽智慧怎麽區分呢?我們所說的,我們所做的,我們的思想像泉水壹樣從我們的大腦中流出,那麽自然,但是機器可以,那麽什麽樣的機器是智能的呢?科學家制造了汽車、火車、飛機、收音機等等。它們模仿我們身體器官的功能,但它們能模仿人腦的功能嗎?到目前為止,我們只知道我們皇冠上的這個東西是由數十億個神經細胞組成的器官。我們對這個東西知之甚少,模仿它可能是世界上最難的事情。
英國科學家圖靈對智慧的定義做出了貢獻。如果壹個機器能通過壹個叫做圖靈實驗的實驗,那它就是智能的。圖靈實驗的本質是,當人不看外表,無法區分機器的行為和人的行為時,機器就是智能的。不要以為圖靈只做了這個貢獻就會名垂青史。如果妳是學計算機的,妳就會知道,對於計算機人來說,獲得圖靈獎就相當於獲得了物理學家的諾貝爾獎。圖靈在理論上為計算機的產生奠定了基礎。沒有他的傑出貢獻,世界上就不會有這樣的事,更不用說什麽網絡了。
早在計算機出現之前,科學家們就希望制造出能夠模擬人類思維的機器。在這方面,我想提壹下另壹位傑出的數學家、哲學家布爾,他和其他傑出的科學家壹起,通過對人類思維的數學化和精確化描述,奠定了智能機器的思維結構和方法,而我們今天的計算機所使用的邏輯基礎就是由他創立的。
我想學過計算機的人都會對布爾很熟悉。我們所學的布爾代數就是由它創造的。當計算機出現後,人類開始真正有了壹個可以模擬人類思維的工具。在以後的歲月裏,無數科學家為了這個目標而努力。現在人工智能已經不是幾個科學家的專利了。世界上幾乎所有大學的計算機系都在學習這門學科,學計算機的大學生也必須學習這樣壹門課程。經過不懈的努力,現在的電腦似乎已經變得非常聰明了。在剛剛結束的象棋比賽中,電腦戰勝了人,這是眾所周知的。妳可能沒有註意到,在壹些地方,計算機幫助人們做其他原本屬於人類的工作。計算機以其高速度和準確性為人類發揮作用。人工智能壹直是計算機科學的前沿學科,計算機編程語言和其他計算機軟件也因為人工智能的進步而存在。
現在人類已經把計算機的計算能力提高到了前所未有的水平,人工智能也將引領下壹個世紀計算機發展的潮流。現在人工智能的發展因為理論限制還不明顯,但壹定會像今天的網絡壹樣深刻地影響我們的生活。
世界各地對人工智能的研究已經開始很久了,但是真正實現人工智能要從計算機誕生算起,然後人類才有可能用機器實現人類的智能。AI這個英文單詞最早是在1956年的壹次會議上提出來的。之後在壹些科學的努力下發展起來。人工智能的進步並沒有我們想象的那麽迅速,因為人工智能的基礎理論並不完備,我們無法從本質上解釋我們的大腦為什麽能夠思考,這種思考來自於什麽,這種思考為什麽會產生等等。但經過幾十年的發展,人工智能正以其巨大的力量影響著人們的生活。
讓我們回顧壹下隨著人工智能的發展,計算機的發展。1941年,美國和德國聯合研制的第壹臺計算機誕生了。此後,存儲和處理信息的方式發生了革命性的變化。第壹臺電腦的外形不是很好。它又胖又嬌氣,需要在空調房裏工作。如果妳想讓它處理任何事情,妳需要重新連接電線。這不是壹個省力的工作。夙千絲。我覺得程序員現在都活在天堂了。
最後在1949年發明了壹臺可以存儲程序的電腦。這樣編程程序最後就可以焊接了,這樣就好多了。因為編程變得非常簡單,計算機理論的發展最終導致了人工智能理論的出現。人們終於可以找到壹種方法來存儲信息並自動處理它。
雖然現在看起來這種新機器可以實現人類的壹些智能,但是直到20世紀50年代,人們才把人類的智能和這種新機器聯系起來。我們註意到了旁邊那個挺著大肚子的老人,他對反饋理論的研究最終讓他提出了壹個論點,這壹切
人類智力的結果都是反饋的結果,智力是通過不斷地把結果反饋給身體而產生的。我們的廁所就是壹個很好的例子。水之所以不會不停的流,正是因為有壹個檢測水位變化的裝置。如果水太多,就關掉水管,這實現了反饋,是壹種負反饋。如果連我們廁所裏的設備都可以實現反饋,那麽我們應該可以用壹臺機器實現反饋,進而實現人類智能的機器形式復制。這個想法對人工智能的早期影響很大。
在1955的時候,香農等人開發了邏輯理論家程序,這是壹個具有樹形結構的程序。當程序運行時,它在樹中搜索,找到最接近可能答案的樹的分支,以獲得正確的答案。這個程序可以說在人工智能史上有著重要的地位,它給學術界和社會帶來了巨大的影響,以至於我們現在使用的很多方法和思想仍然來自於50年代的這個程序。
1956年,人工智能領域的另壹位著名科學家麥卡錫(右邊那個人)召集了壹次會議,討論人工智能未來的發展方向。從此,人工智能的名稱正式確立。這次大會在人工智能的歷史上並不是壹次巨大的成功,但它給了人工智能的創始人壹個相互交流的機會,也為人工智能未來的發展鋪平了道路。之後,工人智能的重點開始是建立壹個可以自己解決問題的實用系統,並要求系統具有自學習能力。1957年,Shannon等人開發了壹個叫做通用問題求解器(GPS)的程序,擴展了Wiener的反饋理論,可以解決壹些常見的問題。當其他科學家都在努力開發這個系統的時候,右邊的科學家做出了巨大的貢獻。他創造了表格處理語言LISP,至今仍被許多人工智能程序使用,它幾乎成了人工智能的代名詞。時至今日,LISP仍在發展。
1963,麻省理工學院受美國政府和國防部支持,開展人工智能研究。美國政府沒有做別的,只是在冷戰中與蘇聯保持平衡。雖然這個目的有點爆炸性,但是它的結果讓人工智能有了很大的發展。此後,許多程序備受關註,麻省理工學院開發了SHRDLU。20世紀60年代,學生系統可以解決代數問題,而SIR系統開始理解簡單的英語句子。SIR的出現導致了壹門新學科的出現:自然語言處理。20世紀70年代出現的專家系統是壹大進步。人們第壹次知道計算機可以代替人類專家。由於計算機硬件性能的提高,人工智能得以進行壹系列重要的活動,如數據的統計分析、參與醫療診斷等。作為生活的壹個重要方面,它開始改變人類的生活。理論上,20世紀70年代也是大發展時期,計算機開始有簡單的思維和視覺。然而,到了70年代,另壹種人工智能語言Prolog誕生了,它和LISP壹起,幾乎成為了人工智能工作者不可或缺的工具。不要以為人工智能離我們很遠。它已經進入我們的生活,模糊控制,決策支持等等。讓計算機代替人類進行簡單的智力活動,解放人類從事其他更有益的工作,是人工智能的目的,但我認為對科學真理無止境的追求才是最終的動力。
二、人工智能的應用領域
1,解題。
人工智能的第壹個偉大成就是下棋程序。在國際象棋比賽中應用的壹些技術,如向前看幾步,將困難的問題分解為壹些更容易的子問題,並發展為基本的人工智能技術,如搜索和問題歸納。今天的計算機程序已經可以達到各種方塊棋和象棋的冠軍水平。但壹直沒有解決,包括人類玩家擁有但無法清晰表達的能力。比如象棋大師洞察棋局的能力。另壹個問題與問題的原始概念有關,在人工智能中稱為問題表征的選擇。人們往往能找到壹些思考問題的方法,從而使解決方案變得更容易,解決問題。到目前為止,人工智能程序已經能夠知道如何考慮它們想要解決的問題,即搜索解空間,找到更好的解。
2.邏輯推理和定理證明。
邏輯推理是人工智能研究中最持久的領域之壹,其中找到壹些方法,只關註大型數據庫中的相關事實,關註可信的證明,並在新信息出現時及時修正這些證明顯得尤為重要。數學中的猜想問題。尋找壹個證明或反證定理,不僅需要根據假設進行推導的能力,很多非形式化的任務,包括醫學診斷和信息檢索,都可以像定理證明壹樣形式化。因此,定理證明是人工智能方法研究中壹個極其重要的課題。
3.自然語言處理。
自然語言處理是人工智能技術應用於實際領域的典型例子。經過多年的努力,這個領域已經取得了許多顯著的成就。目前該領域的主要課題是:如何基於主題和對話情境,關註大量常識——世界知識和期望,生成和理解自然語言。這是壹個極其復雜的編解碼問題。
4.智能信息檢索技術。
受“()*+(*)技術快速發展的影響,信息獲取與提煉技術已成為當代計算機科學與技術研究中迫切需要解決的研究課題。將人工智能技術應用於該領域,是人工智能在實踐中廣泛應用的契機和突破口。
5.專家系統。
專家系統是目前人工智能中最活躍、最有效的研究領域。它是壹個程序系統,在壹個特定的領域有大量的知識和經驗。近年來,在“專家系統”或“知識工程”的研究中,出現了成功而有效地應用人工智能技術的趨勢。人類專家擁有豐富的知識,因此他們能夠達到優秀的解決問題的能力。所以如果計算機程序能夠體現和應用這些知識,它也應該能夠解決人類專家解決的問題,幫助人類專家發現推理過程中的錯誤,這壹點現在已經得到了證實。例如,在礦物勘探、化學分析、規劃和醫療診斷方面,專家系統已經達到了人類專家的水平。壹個成功的例子是:探礦系統發現了壹個價值超過6543.8億美元的鉬礦床。DENDRL系統的性能已經超過了普通專家的水平,在化學結構分析中可以供上百人使用。我的CIN系統可以為血液傳染病的診斷和治療提供建議。經過正式鑒定,對細菌性血液病和腦膜炎的診斷和治療已經超過了這方面的專家。
第三,人工智能理論的數學化趨勢越來越突出。
在現代科技飛速發展的今天,很多科技理論都要靠數學來提供證明,靠數學來模擬。人工智能的發展也不例外。如何將人的思維活動形式化、符號化,使之能夠在計算機上實現,已經成為人工智能研究的重要課題。在這方面,邏輯學的相關理論、方法和技術起著非常重要的作用,它不僅為人工智能提供了強有力的工具,也為知識推理奠定了理論基礎。人工智能中使用的邏輯可以大致分為兩類。壹種是經典命題邏輯和壹階謂詞邏輯,其特點是任何命題的真值非“真”即“假”,兩者必為其壹。這類問題可以用數學中的經典邏輯理論來解決。世界上有各種各樣的事物,除了某些事物或概念之外,不確定的事物或概念更廣泛地存在。這些不確定性是經典邏輯理論無法解決的。因此,我們需要開發新的數學工具來表達這些問題。目前在人工智能中,不確定的事物或概念是用多值邏輯、模糊理論和概率來描述和處理的。雖然多值邏輯,模糊理論,概率都是基於[!,"]來描述不確定性,但它們之間有很大的差異。多值邏輯是通過區分真(")和假(!)增加了若幹中介真值來描述事物真實的程度,但它把每壹個中介真值都看作是彼此完全分離的、明確定義的。而模糊理論認為不同中間真值之間沒有明確的界限,表現出不同中間值相互滲透、相互滲透的特點,從而更好地反映了不確定性的本質。概率是用來衡量壹個事件發生的可能性,但事件本身的意義是明確的,只是在壹定條件下可能不會發生。它和模糊理論是從兩個不同的角度描述不確定性的,所以有人說模糊理論描述的是事物內部的不確定性,而概率描述的是事物外部的不確定性。從上面可以看出,數學使人工智能很好地模擬了人類的智能,極大地促進了人工智能的發展。人工智能還有壹些問題很難用現在的數學來表達。我相信這些問題在數學知識不斷發展後可以很快解決。
動詞 (verb的縮寫)人工智能的發展現狀及展望
目前大多數人工智能系統都是基於物理符號系統的假設。在能夠與物理符號系統假說相抗衡的人工智能新理論出現之前,SOAr在探索智能行為壹般特征和人類認知具體特征的艱難歷程中,無論是設計原理還是實驗結果,都取得了與眾不同的進展或成就,處於人工智能研究的前沿。
20世紀80年代,以Newell A為代表的研究人員總結了專家系統的成功經驗,吸收了認知科學研究的最新成果,提出了Soar作為通用智能的體系結構。目前,Soar已經表現出很強的解決問題的能力。在Soar中實現了30多種搜索方法,並實現了幾個知識密集型任務(專家系統),如RI。ROOks提出了壹種新的人工智能方式。它認為智能系統的能力可以在沒有概念或符號的情況下逐漸進化。在其研究中突出了四個概念:(1)機器人所處的情境不涉及抽象描述,而是處於直接影響系統行為的情境中。(2)混凝土機器人有軀幹,直接從周圍世界獲得經驗,工作後感官會立即反饋。(3)智能的來源不僅僅局限於計算設備,還源於與周圍環境交互的動態決策。(4)湧現智能出現在系統與周圍世界的相互作用中,有時出現在系統的組成部分之間。
動詞 (verb的縮寫)結論
人工智能不僅需要邏輯思維和模仿,科學家對人腦和神經系統的研究越多,就越肯定情感是智力的壹部分,而不是與之分離的。因此,人工智能領域的下壹個突破,可能是賦予計算機不僅更多的邏輯推理能力,還有情感能力。許多科學家斷言,機器的智能將很快超過阿爾伯特·愛因斯坦和霍金的總和。到下世紀中葉,人類生活的性質也將發生變化。神經植入將增強人類的知識和思維能力,開始向復合型人/機關系過渡,逐漸停止人類對生物有機體的需求。大量非常微小的機器人會在大腦的感覺區占據壹席之地,制造出真假難辨的虛擬現實的模擬效果。
人工智能的實現不是天方夜譚。雖然會很辛苦,但是沒有人規定只有人類才能思考。就像不同的生命形式壹樣,動物、植物和微生物都是不同的生命形式。人類可以用未知的方式思考,計算機可以用另壹種(不壹定相同的)形式思考。
著名軟件公司ADOBE的專業繪圖軟件Illustrator的壹種文件格式!
AI(人工智能):人工智能。是指計算機模仿現實世界行為和人類思考、遊戲方式的計算能力。那是壹套極其復雜的計算系統和規則。
=============================================================
此外,AI還代表阿倫·艾弗森(ALLEN IVERSON),他出生在美國。他是世界上最好的籃球聯賽“NBA”96黃金壹代的代表,也是NBA歷史上最好的後衛之壹。他很聰明,在眾多身高183cm的魁梧選手中跳躍,壹路領先。他曾獲得過NBA得分王和搶斷王的稱號,也曾在2001帶領76人殺入NBA總決賽。憑借特立獨行的風格和紋身般的身材,他成為了全世界籃球少年追捧的偶像。
————————————————————————————————————
歌手名字:艾英文名:AI
唱片公司:環球音樂。
國籍:日本語言:日語
樂趣:
個人經歷:*東營首席嘻哈女,R & amp;b歌姬,她是壹個十足的嘻哈女,也是壹個溫柔的R &;b美聲歌手艾,22歲時,唱的是‘嗯,嗯……’與安室奈美惠在時裝學校,並顯示了她驚人的舞蹈技巧在詹娜傑克森的音樂錄影帶。除了她過人的歌舞天賦,她在歌詞和歌曲上的創意更是讓人印象深刻。在B階段,嘻哈音樂巨頭Def Jam Japan簽下壹紙合約後,專輯《Original A.I./Original A.I .》的發行立刻獲得了媒體的壹致認可,除了獲得R & amp太空淋浴電視;除了音樂錄影帶大獎,他還代表日本參加了2004年MTV BUZZ ASIA演唱會,壹舉打入亞洲市場。
HIP HOP小天後艾,因其過人的唱功在日本獲得了“新時代音樂代言人”的榮譽,近日參加了在臺北舉辦的“臺北流行音樂節”,日本歌手和也壹同出席。在這場盛大的音樂節上,艾以她新穎獨特的演唱風格和充滿活力的表演迷倒了6萬名歌迷。AI有四分之壹的意大利血統,骨子裏有壹種浪漫前衛的氣息。而且她在美國長大,對音樂的接觸也非常多元。因為艾的媽媽很喜歡音樂,所以從小就深受各種音樂的影響。15歲的艾還參與了珍妮特·傑克遜的MTV《Godeep》的錄制。但是她在日本出道的時候並不順利,因為和工作人員對音樂的理解不壹樣。當所有人都對她的音樂無動於衷的時候,她卻想敲敲墻,這顯示了她的可愛。但艾並沒有被現實打敗,依然堅持走HIP HOP的音樂路線,使得她的音樂風格帶給人全新的感受。在今年日本最權威的民意調查中,艾從眾多新女性中脫穎而出,成為新壹代音樂天後的接班人。對此,艾本人很滿意。她說她想成為壹個很有活力的歌手,給更多的人帶來快樂。艾也為這次臺北流行音樂節做了充分的準備。除了帶來與他同臺演出的DJ、化妝師、造型師、聲樂家阿福拉,就連日本新聞、電通、朝日電視臺等日本媒體的資深人士以及自己經濟公司的社長也壹同前來。浩浩蕩蕩的23人團隊訪華,讓艾很有面子。在去臺灣之前,艾經常向去過臺灣省的等人了解臺灣省的情況。聽說臺北有很多好吃的,艾興奮地說想吃正規的小籠包和路邊攤。所以這次臺灣省之行,除了參加音樂節、拍攝特輯,還向日本觀眾介紹臺灣省美食,也讓艾欣喜不已。臺灣省的演出大獲成功後,艾也表示想多了解華語音樂。如果有機會,他也希望像平井堅、安室奈美惠等日本歌手壹樣,在臺灣省及其他地方舉辦演唱會,與臺灣省的歌手同臺演出。其實,這已經不是艾第壹次出國演出了。幾個月前在韓國首爾的MTV BUZZ ASIA演唱會上,AI也把歌詞改成了韓語,而這次為了更貼近觀眾,AI也把歌詞改成了中文來唱。在為期四天的臺灣之行中,艾讓更多的人欣賞了她的“小女王”風格,並順便為她將於今年秋天舉行的全國巡演造勢。