煤、石油毒素礦物燃料燃燒時釋放的能量,來自碳、氫、氧的化合反應。壹般化學炸藥如梯恩梯(TNT)爆炸時釋放的能量,來自化合物的分解反應。在這些化學反應裏,碳、氫、氧、氮等原子核都沒有變化,只是各個原子之間的組合狀態有了變化。核反應與化學反應則不壹樣。在核裂變或核聚變反應裏,參與反應的原子核都轉變成其他原子核,原子也發生了變化。因此,人們習慣上稱這類武器為原子武器。但實質上是原子核的反應與轉變,所以稱核武器更為確切。 世界核武器分布圖
核武器爆炸時釋放的能量,比只裝化學炸藥的常規武器要大得多。例如,1千克鈾全部裂變釋放的能量約8×10^13焦耳,比1千克TNT炸藥爆炸釋放的能量4.19×10^6焦耳約大2000萬倍。因此,核武器爆炸釋放的總能量,即其威力的大小,常用釋放相同能量的TNT炸藥量來表示,稱為TNT當量。美、俄等國裝備的各種核武器的TNT當量,小的僅1000噸,甚至更低,目前已有微型核武器,爆炸當量在幾十噸;大的達1000萬噸,前蘇聯曾試爆過5000萬噸當量的氫彈。 2010版最新世界核武器分布圖
核武器爆炸,不僅釋放的能量巨大,而且核反應過程非常迅速,微秒級的時間內即可完成。因此,在核武器爆炸周圍不大的範圍內形成極高的溫度,加熱並壓縮周圍空氣使之急速膨脹,產生高壓沖擊波。地面和空中核爆炸,還會在周圍空氣中形成火球,發出很強的光輻射。核反應還產生各種射線和放射性物質碎片;向外輻射的強脈沖射線與周圍物質相互作用,造成 核武器標識
電流的增長和消失過程,其結果又產生電磁脈沖。這些不同於化學炸藥爆炸的特征,使核武器具備特有的強沖擊波、光輻射、早期核輻射、放射性沾染和核電磁脈沖等殺傷破壞作用。核武器的出現,對現代戰爭的戰略戰術產生了重大影響。
核武器爆炸(7張) 核武器系統,壹般由核戰鬥部、投射工具和指揮控制系統等部分構成,核戰鬥部是其主要構成部分。核戰鬥部亦稱核彈頭,並常與核裝置、核武器這兩個名稱相互代替使用。實際上,核裝置是指核裝料、其他材料、起爆炸藥與雷管等組合成的整體,可用於核試驗,但通常還不能用作可靠的武器;核武器則指包括核戰鬥部在內的整個核武器系統。
核武器的出現,是20世紀40年代前後科學技術重大發展的結果。1939年初,德國化學家O.哈恩和物理化學家F.斯特拉斯曼發表了鈾原子核裂變現象的論文。幾個星期內,許多國家的科學家驗證了這壹發現,並進壹步提出有可能創造這種裂變反應自持進行的條件,從而開辟了利用這壹新能源為人類創造財富的廣闊前景。但是,同歷史上許多科學技術新發現壹樣,核能的開發也被首先用於軍事目的,即制造威力巨大的原子彈,其進程受到當時社會與政治條件的影響和制約。從1939年起,由於法西斯德國擴大侵略戰爭,歐洲許多國家開展科研工作日益困難。同年9月初,丹麥物理學家N.H.D.玻爾和他的合作者J.A.惠勒從理論上闡述了核裂變反應過程,並指出能引起這壹反應的最好元素是同位素鈾235。正當這壹有指導意義的研究成果發表時,英、法兩國向德國宣戰。1940年夏,德軍占領法國。法國物理學家J.-F.約裏奧-居裏領導的壹部分科學家被迫移居國外。英國曾制訂計劃進行這壹領域的研究,但由於戰爭影響,人力物力短缺,後來也只能采取與美國合作的辦法,派出以物理學家J.查德威克為首的科學家小組,赴美國參加由理論物理學家J.R.奧本海默領導的原子彈研制工作。 在美國,從歐洲遷來的匈牙利物理學家齊拉德·萊奧首先考慮到,壹旦法西斯德國掌握原子彈技術可能帶來嚴重後果。經他和另幾位從歐洲移居美國的科學家奔走推動,於1939年8月由物理學家A.愛因斯坦寫信給美國第32屆總統F.D.羅斯福,建議研制原子彈,才引起美國政府的註意。但開始只撥給經費6000美元,直到1941年12月日本襲擊珍珠港後,才擴大規模,到1942年8月發展成代號為“曼哈頓工程區”的龐大計劃,直接動用的人力約60萬人,投資20多億美元。到第二次世界大戰即將結束時制
向世人揭示全球核武器爆炸解禁照(10張)成3顆原子彈,使美國成為第壹個擁有原子彈的國家。制造原子彈,既要解決武器研制中的壹系列科學技術問題,還要能生產出必需的核裝料鈾235、鈈239。天然鈾中同位素鈾235的豐度僅0.72%,按原子彈設計要求必須提高到90%以上。當時美國經過多種途徑探索研究與比較後,采取了電磁分離、氣體擴散和熱擴散三種方法生產這種高濃鈾。供壹顆“槍法”原子彈用的幾十千克高濃鈾,是靠電磁分離法生產的。建設電磁分離工廠的費用約3億美元(磁鐵的導電線圈是用從國庫借來的白銀制造的,其價值尚未計入)。鈈239要在反應堆內用中子輻照鈾238的方法制取。供兩顆“內爆法”原子彈用的幾十千克鈈239,是用3座石墨慢化、水冷卻型天然鈾反應堆及與之配套的化學分離工廠生產的。以上事例可以說明當時的工程規模。由於美國的工業技術設施與建設未受到戰爭的直接威脅,又掌握了必需的資源,集中了壹批國內外的科技人才,使它能夠較快地實現原子彈研制計劃。 德國的科學技術,當時本處於領先地位。1942年以前,德國在核技術領域的水平與美、英大致相當,但後來落伍了。美國的第壹座試驗性石墨反應堆,在物理學家E.費密領導下,1942年12月建成並達到臨界;而德國采用的是重水反應堆,生產鈈239,到1945年初才建成壹座不大的次臨界裝置。為生產高濃鈾,德國曾著重於高速離心機的研制,由於空襲和電力、物資缺乏等原因,進展很緩慢。其次,A.希特勒迫害科學家,以及有的科學家持不合作態度,是這方面工作進展不快的另壹原因。更主要的是,德國法西斯頭目過分自信,認為戰爭可以很快結束,不需要花氣力去研制尚無必成把握的原子彈,先是不予支持,後來再抓已困難重重,研制工作終於失敗。 胖子(投向長崎的原子彈)
1945年5月德國投降後,美國有不少知道“曼哈頓工程”內幕的人士,包括以物理學家J.弗蘭克為首的壹大批從事這壹工作的科學家,反對用原子彈轟炸日本城市。當時,日本侵略軍受到中國人民長期抗戰的有力打擊,實力大大削弱。美、英在太平洋地區的進攻,又幾乎全部摧毀日本海軍,海上封鎖使日該國內的物資供應極為匱泛。二戰通過硫磺島壹戰,美國估計要徹底打垮日本,在日本本土登陸,至少還要付出100萬美軍的犧牲。 這樣沈重的包袱美國背不起。也不想背,用原子彈是最好的方式。 美國於8月6日、9日先後在日本的廣島和長崎投下了僅有的兩顆原子彈,代號分別為“小男孩”和“胖子”。(史料記載,美國在日本投下的原子彈有3顆,實際爆炸的是小男孩 和胖子 ,第3顆因為技術原因沒能爆炸,被日軍回收,原本日本也要發展原子彈,但研究設施在美軍轟炸中毀壞,於是把原子彈以壹定條件轉讓給蘇聯,蘇聯根據這顆原子彈的設計在短時間內設計出了蘇聯的第壹顆原子彈) 蘇聯在1941年6月遭受德軍入侵前,也進行過研制原子彈的工作。鈾原子核的自發裂變,是在這壹時期內由蘇聯物理學家Г。Н.弗廖羅夫和Κ。А.佩特紮克發現的。衛國戰爭爆發後,研制工作被迫中斷,直到1943年初才在物理學家И。В.庫爾恰托夫的組織領導下逐漸恢復,並在戰後加速進行。1949年8月,蘇聯進行了原子彈試驗。1950年1月,美國總統H.S.杜魯門下令加速研制氫彈。1952年11月,美國進行了以液態氘為熱核燃料的氫彈原理試驗,但該實驗裝置非常笨重,不能用作武器。1953年8月,蘇聯進行了以固態氘化鋰6為熱核燃料的氫彈試驗,使氫彈的實用成為可能。美國於1954年2月進行了類似的氫彈試驗。英國、法國先後在50和60年代也各自進行了原子彈與氫彈試驗。 核武器爆炸圖
中國在開始全面建設社會主義時期,基礎工業有了壹定的發展,即著手準備研制原子彈。1959年開始起步時,國民經濟發生嚴重困難。同年6月,蘇聯政府撕毀中蘇在1957年10月簽訂的關於國防新技術協定,隨後撤走專家,中國決心完全依靠自己的力量來實現這壹任務。中國首次試驗的原子彈取"596"為代號,就是以此激勵全國軍民大力協同做好這項工作。1964年10月16日,首次原子彈試驗成功。經過兩年多,1966年12月28日,小當量的氫彈原理試驗成功;半年之後,於1967年6月17日成功地進行了百萬噸級的氫彈空投試驗。中國堅持獨立自主、自力更生的方針,在世界上以最快的速度完成了核武器這兩個發展階段的任務。 1945年8月6日和9日,在第二次世界大戰結束的前夕,美國空軍在日本的廣島和長崎接連投擲了兩枚原子彈。這場人類有史以來的巨大災難,造成了10萬余日本平民死亡和8萬多人受傷。原子彈的空前殺傷和破壞威力,震驚了世界,也使人們對以利用原子核的裂變或聚變的巨大爆炸力而制造的新式武器有了新的認識。 目前,人們通常所說的核武器是指利用原子核的裂變或聚變所產生的巨大能量和破壞力制造的具有巨大殺傷力的武器,即指利用能自行維持原子核裂變或聚變鏈式反應瞬間釋放的能量產生爆炸作用,並具有大規模殺傷破壞效應的武器。 裂變核武器的基本原理是使壹定量的鈾—235或鈈—239從亞臨界態向超臨界態轉變,也就是使核裝置產生中子的速度大於中子從核裝置逸出的速度。有兩種方法可以實現這種轉變:壹種方法是把核裝置分成兩部分,而每壹部分都小到不足以具有中子正增殖率,然後用炮式設備把兩部分擊成壹塊;另壹種方法是用烈性化學炸藥包住處於亞臨界態的球形核裝置,通過引爆將核裝置壓成超臨界態。 聚變核武器是使氫的同位素氘或氚化鋰這類熱核燃料中產生起爆條件,用裂變核彈的方法使核武器中的熱核燃料具有10000000—20000000℃高溫,從而引起核聚變。 核武器爆炸圖
原子彈和氫彈通常以千噸或兆噸梯恩梯(TNT)當量作為單位來表示。如1945年美國投在廣島的裂變核彈,不到50公斤的鈾釋放出來的能量相當於2萬噸化學炸藥。各種聚變核彈即熱核彈(氫彈),其威力最高可達60兆噸。據計算,在核武器爆炸時,1公斤鈾—235全部裂變釋放的能量相當於2萬噸TNT釋放的能量,而1公斤氘和氚的混合物完全聚變時放出的能量大約是1公斤鈾—235完全裂變所放出能量的3—4倍。
美國對日本投下的兩顆原子彈,是以帶降落傘的核航彈形式,用飛機作為運載工具的。以後,隨著武器技術的發展,已形成多種核武器系統,包括彈道核導彈、巡航核導彈、 防空核導彈、反導彈核導彈、反潛核火箭、深水核炸彈、核航彈、核炮彈、核地雷等。其中,配有多彈頭的彈道核導彈,以及各種發射方式的巡航核導彈,是美、蘇兩國裝備的主要核武器。 通常將核武器按其作戰使用的不同劃分為兩大類,即用於襲擊敵方戰略目標和防禦己方戰略要地的戰略核武器,和主要在戰場上用於打擊敵方戰鬥力量的戰術核武器。蘇聯還劃分有“戰役戰術核武器”。核武器的分類方法,與地理條件、社會政治因素有關,並不是十分嚴格的。自70年代末以後,美國官方文件很少使用“戰術核武器”,代替它的有“戰區核武器”、“非戰略核武器”等,並把中遠程、中程核導彈也劃歸這壹類。 已生產並裝備部隊的核武器,按核戰鬥部設計看,主要屬於原子彈和氫彈兩種類型。至於核武器的數量,並無準確的公布數字,有關研究機構的估計數字也不壹致。按近幾年的資料綜合分析,到80年代中期,美、蘇兩國總計有核戰鬥部50000枚左右,占全世界總數的95%以上。其TNT當量,總計為120億噸左右。而第二次世界大戰期間,美國在德國和日本投下的炸彈,總計約200萬噸TNT,只相當於美國B-52型轟炸機攜載的2枚氫彈的當量。從這壹粗略比較可以看出核武器庫貯量的龐大。美蘇兩國進攻性戰略核武器(包括洲際核導彈、潛艇發射的彈道核導彈、巡航核導彈和戰略轟炸機)在數量和當量上比較,美國在投射工具(陸基發射架、潛艇發射管、飛機)總數和TNT當量總值上均少於蘇聯,但在核戰鬥部總枚數上多於蘇聯。考慮到核爆炸對面目標的破壞效果同當量大小不是簡單的比例關系,另壹種估算辦法是以壹定的沖擊波超壓對應的破壞面積來度量核戰鬥部的破壞能力,即取核戰鬥部當量值(以百萬噸為計算單位)的2/3次方為其“等效百萬噸當量”值(也有按目標特性及其分布和核攻擊規模大小等不同情況,選用小於2/3的其他方次的),再按各種核戰鬥部的枚數累計算出總值。按此法估算比較美、蘇兩國的戰略核武器破壞能力,由於當量小於百萬噸的核戰鬥部枚數,美國多於蘇聯,兩國的差距並不很大。但自80年代以來,隨著蘇聯在分導式多彈頭導彈核武器上的發展,這壹差距也在不斷擴大。而對點(硬)目標(見點目標)的破壞能力,則核武器投射精度起著更重要的作用,由於在這方面美國壹直領先,仍處於優勢。 除美國、蘇聯、英國、法國和中國已掌握核武器外,印度在1974年進行過壹次核試驗,巴基斯坦1998年05月29日首次核試驗成功,朝鮮2006年10月9日首次核試驗成功。壹般認為,掌握必要的核技術並具有壹定工業基礎及經濟實力的國家,也完全有可能制造原子彈。